skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fernandez, Vincent"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The phylogenetic relationships within crown Crocodylia remain contentious due to conflicts between molecular and morphological hypotheses. However, morphology‐based datasets are mostly constructed on external characters, overlooking internal structures. Here, we use 3D geometric morphometrics to study the shape of the intertympanic sinus system in crown crocodylians during ontogeny, in order to assess its significance in a taxonomic context. Intertympanic sinus shape was found to be highly correlated with size and modulated by cranial shape during development. Still, adult sinus morphology distinguishes specimens at the family, genus and species level. We observe a clear distinction between Alligatoridae and Longirostres, a separation of differentCrocodylusspecies and the subfossil Malagasy genusVoay, and a distinction between theTomistomaandGavialislineages. Our approach is independent of molecular methods but concurs with the molecular topologies. Therefore, sinus characters could add significantly to morphological datasets, offering an alternative viewpoint to resolve problems in crocodylian relationships. 
    more » « less
  2. Abstract Actinopterygii is a major extant vertebrate group, but limited data are available for its earliest members. Here we investigate the morphology of Devonian actinopterygians, focusing on the lower jaw. We use X‐ray computed tomography (XCT) to provide comprehensive descriptions of the mandibles of 19 species, which span the whole of the Devonian and represent roughly two‐thirds of all taxa known from more than isolated or fragmentary material. Our findings corroborate previous reports in part but reveal considerable new anatomical data and represent the first detailed description for roughly half of these taxa. The mandibles display substantial variation in size, spanning more than an order of magnitude. Although most conform to a generalized pattern of a large dentary and one or two smaller infradentaries, XCT data reveal significant differences in the structure of the jaw and arrangement of teeth that may be of functional relevance. We report the presence of a rudimentary coronoid process in several taxa, contributed to by the dentary and/or infradentaries, as well a raised articular region, resulting in a mandible with an offset bite and that functions as a bent level arm. Among the most striking variation is that of tooth morphology: several taxa have heterodont dentary teeth that vary in size and orientation, and multiple variations on enlarged, whorl‐like and posteriorly‐oriented anterior coronoid dentition are observed. We use these new data to revise morphological characters that may be of phylogenetic significance and consider the possible functional implicationds of these traits. The observed variation in mandible form and structure suggests previously unappreciated functional diversity among otherwise morphologically homogenous Devonian ray‐finned fishes. 
    more » « less
  3. Abstract Limited research on the gross anatomy of the blood vessels has been conducted on hylobatids, or lesser apes, so far. Here, we present a detailed study of the arteries of siamangs (Symphalangus) and compare our findings with data compiled from our previous studies as well as from the literature about other hylobatids, greater apes, and humans. In particular, a three‐dimensional full‐body computed tomography data set of a siamang neonate was analyzed in detail for this study, with notable findings in the head and neck, thorax, upper limb, abdomen and pelvis, and lower limb. Of the 62 arteries that we studied in detail, a total of 20 arteries that have never been described in detail in hylobatids are reported in this study. Key similarities to other apes differing from humans include the existence of a humeral common circumflex trunk and the origination of the dorsalis pedis from the posterior tibial artery or saphenous artery instead of the anterior tibial artery. Similarities to humans differing from other apes include the separation of the lingual and facial arteries and the origination of the profunda brachii from the brachial artery instead of the axillary artery. Our research and broader comparisons, therefore, contribute to knowledge about the soft tissues of hylobatids, other apes, and primates in general and facilitate a better understanding of the anatomical evolution and key differences and similarities among these taxa. 
    more » « less